Biological Mechanisms for Learning: A Computational Model of Olfactory Learning in the Manduca sexta Moth, with Applications to Neural Nets

نویسندگان

  • Charles B. Delahunt
  • Jeffrey A. Riffell
  • J. Nathan Kutz
چکیده

The insect olfactory system, which includes the antennal lobe (AL), mushroom body (MB), and ancillary structures, is a relatively simple neural system capable of learning. Its structural features, which are widespread in biological neural systems, process olfactory stimuli through a cascade of networks where large dimension shifts occur from stage to stage and where sparsity and randomness play a critical role in coding. Learning is partly enabled by a neuromodulatory reward mechanism of octopamine stimulation of the AL, whose increased activity induces rewiring of the MB through Hebbian plasticity. Enforced sparsity in the MB focuses Hebbian growth on neurons that are the most important for the representation of the learned odor. Based upon current biophysical knowledge, we have constructed an end-to-end computational model of the Manduca sexta moth olfactory system which includes the interaction of the AL and MB under octopamine stimulation. Our model is able to robustly learn new odors, and our simulations of integrate-and-fire neurons match the statistical features of in vivo firing rate data. From a biological perspective, the model provides a valuable tool for examining the role of neuromodulators, like octopamine, in learning, and gives insight into critical interactions between sparsity, Hebbian growth, and stimulation during learning. Our simulations also inform predictions about structural details of the olfactory system that are not currently well-characterized. From a machine learning perspective, the model yields bioinspired mechanisms that are potentially useful in constructing neural nets for rapid learning from very few samples. These mechanisms include high-noise layers, sparse layers as noise filters, and a biologically-plausible optimization method to train the network based on octopamine stimulation, sparse layers, and Hebbian growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Moth Brain Learns to Read Mnist

We seek to characterize the learning tools (ie algorithmic components) used in biological neural networks, in order to port them to the machine learning context. In particular we address the regime of very few training samples. The Moth Olfactory Network is among the simplest biological neural systems that can learn. We assigned a computational model of the Moth Olfactory Network the task of cl...

متن کامل

Putting a bug in ML: The moth olfactory network learns to read MNIST

We seek to (i) characterize the learning architectures exploited in biological neural networks for training on very few samples, and (ii) port these algorithmic structures to a machine learning context. The Moth Olfactory Network is among the simplest biological neural systems that can learn, and its architecture includes key structural elements widespread in biological neural nets, such as cas...

متن کامل

Characterizing psychophysical measures of discrimination thresholds and the effects of concentration on discrimination learning in the moth Manduca sexta.

What is the spatial and temporal nature of odor representations within primary olfactory networks at the threshold of an animal's ability to discriminate? Although this question is of central importance to olfactory neuroscience, it can only be answered in model systems where neural representations can be measured and discrimination thresholds between odors can be characterized. Here, we establ...

متن کامل

A Flight Sensory-Motor to Olfactory Processing Circuit in the Moth Manduca sexta

Neural circuits projecting information from motor to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any sp...

متن کامل

Neuroethology of oviposition behavior in the moth Manduca sexta.

Olfactory cues play decisive roles in the lives of most insect species, providing information about biologically relevant resources, such as food, mates, and oviposition sites. The nocturnal moth Manduca sexta feeds on floral nectar from a variety of plants (and thus serves as a pollinator), but females oviposit almost exclusively on solanaceous plants, which they recognize on the basis of olfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.02678  شماره 

صفحات  -

تاریخ انتشار 2018